豌豆Ai站群搜索引擎系统:www.wd.chat

🗣 SL提问: ai量化指标源码

✍️ Ai批改: 在AI领域,量化指标源码通常指的是用于评估机器学习模型性能的代码。这些代码可以是开源的库函数,也可以是自定义的函数。以下是一些常用的量化指标及其Python实现:

1、均方误差(Mean Squared Error, MSE):
python
def mse(y_true, y_pred):
return np.mean((y_true y_pred) 2)

2、均方根误差(Root Mean Squared Error, RMSE):
python
def rmse(y_true, y_pred):
return np.sqrt(np.mean((y_true y_pred) 2))

3、平均绝对误差(Mean Absolute Error, MAE):
python
def mae(y_true, y_pred):
return np.mean(np.abs(y_true y_pred))

4、R平方(R-squared):
python
def r2_score(y_true, y_pred):
ss_res = np.sum((y_true y_pred) 2)
ss_tot = np.sum((y_true np.mean(y_true)) 2)
return 1 (ss_res / ss_tot)

5、精确度(Precision):
python
def precision_score(y_true, y_pred):
tp = np.sum((y_true == 1) & (y_pred == 1))
fp = np.sum((y_true == 0) & (y_pred == 1))
return tp / (tp + fp)

6、召回率(Recall):
python
def recall_score(y_true, y_pred):
tp = np.sum((y_true == 1) & (y_pred == 1))
fn = np.sum((y_true == 1) & (y_pred == 0))
return tp / (tp + fn)

7、F1分数(F1 Score):
python
def f1_score(y_true, y_pred):
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
return 2 * (precision * recall) / (precision + recall)

以上代码假设`y_true`和`y_pred`分别是真实值和预测值的数组。

英语分析
📢 商家广告

三乐英语

广告招商

月饼

广东过滤器

广告招商

贵阳用友软件

域名抢注

广告招商

高防vps

豌豆Ai站群搜索引擎系统

广告招商

广告招商

广告招商

广告招商

广告招商


0

IP地址: 223.69.188.221

搜索次数: 2

提问时间: 2025-04-23 02:46:04

❓️ 热门提问
曼卡龙珠宝品牌
富国红利质选混合A
加工黄金手镯多少钱
555
建信中债0-5年政金债指数C
ai智能生命体
通货膨胀反义词
ai制作相机
亚麻金什么颜色
滨州哪里回收黄金首饰
豌豆Ai站群搜索引擎系统

🖌 热门作画


🤝 关于我们
三乐Ai 作文批改 英语分析 在线翻译 拍照识图
Ai提问 英语培训 本站流量 联系我们

🗨 加入群聊
群

🔗 友情链接
搜索引擎入口  台湾网站搜尋  ai提问

🧰 站长工具
Ai工具  whois查询  搜索

📢 温馨提示:本站所有问答由Ai自动创作,内容仅供参考,若有误差请用“联系”里面信息通知我们人工修改或删除。

👉 技术支持:本站由豌豆Ai提供技术支持,使用的最新版:《豌豆Ai站群搜索引擎系统 V.25.05.20》搭建本站。

上一篇 90657 90658 90659 下一篇